满嘴都是糖果

NIO也叫非阻塞IO,于Java1.4中引入, 可以看作是 I/O 多路复用模型

IO 多路复用模型中,线程首先发起 select 调用,询问内核数据是否准备就绪,等内核把数据准备好了,用户线程再发起 read 调用。read 调用的过程(数据从内核空间->用户空间)还是阻塞的。

IO 多路复用模型,通过减少无效的系统调用,减少了对 CPU 资源的消耗。

Java 中的 NIO ,有一个非常重要的选择器 ( Selector ) 的概念,也可以被称为 多路复用器。通过它,只需要一个线程便可以管理多个客户端连接。当客户端数据到了之后,才会为其服务。

NIO使用

其主要构成有三部分,Channels、Buffers、Selectors,下面挨个讲解

Channels

Java NIO的通道类似流,但又有些不同:

这些是Java NIO中最重要的通道的实现:

下面是一个使用FileChannel读取数据到Buffer中的示例:

RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");
FileChannel inChannel = aFile.getChannel();

ByteBuffer buf = ByteBuffer.allocate(48);

int bytesRead = inChannel.read(buf);
while(bytesRead != -1) {
    System.out.println("Read "+ bytesRead);
    buf.flip();
    while(buf.hasRemaining()){
        System.out.print((char) buf.get());
    }
    buf.clear();
    bytesRead = inChannel.read(buf);
}
aFile.close();

Buffers

使用Buffer读写数据一般遵循以下四个步骤:

  1. 写入数据到Buffer
  2. 调用flip()方法
  3. 从Buffer中读取数据
  4. 调用clear()方法或者compact()方法

flip()方法是将buffer写模式转换为读模式,在读模式下,可以读取之前写入到buffer的所有数据。

一旦读完了所有的数据,就需要清空缓冲区,让它可以再次被写入。有两种方式能清空缓冲区:调用clear()或compact()方法。clear()方法会清空整个缓冲区。compact()方法只会清除已经读过的数据任何未读的数据都被移到缓冲区的起始处,新写入的数据将放到缓冲区未读数据的后面。

RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");
FileChannel inChannel = aFile.getChannel();
//create buffer with capacity of 48 bytes
ByteBuffer buf = ByteBuffer.allocate(48);
int bytesRead = inChannel.read(buf); //read into buffer.
while (bytesRead != -1) {
    buf.flip();  //make buffer ready for read
    while (buf.hasRemaining()) {
        System.out.print((char) buf.get()); // read 1 byte at a time
    }

    buf.clear(); //make buffer ready for writing
    bytesRead = inChannel.read(buf);
}
aFile.close();

Buffer的capacity,position和limit

为了理解Buffer的工作原理,需要熟悉它的三个属性:

capacity

作为一个内存块,Buffer有一个固定的大小值,也叫“capacity”.你只能往里写capacity个byte、long,char等类型。一旦Buffer满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。

position

当你写数据到Buffer中时,position表示当前的位置。初始的position值为0.当一个byte、long等数据写到Buffer后, position会向前移动到下一个可插入数据的Buffer单元。position最大可为capacity – 1.

当读取数据时,也是从某个特定位置读。当将Buffer从写模式切换到读模式(调用flip()方法),position会被重置为0. 当从Buffer的position处读取数据时,position向前移动到下一个可读的位置。

limit

在写模式下,Buffer的limit表示你最多能往Buffer里写多少数据。 写模式下,limit等于Buffer的capacity。

当切换Buffer到读模式时, limit表示你最多能读到多少数据。因此,当切换Buffer到读模式时,limit会被设置成写模式下的position值。换句话说,你能读到之前写入的所有数据(limit被设置成已写数据的数量,这个值在写模式下就是position)

Buffer的分配

要想获得一个Buffer对象首先要进行分配。 每一个Buffer类都有一个allocate方法。下面是一个分配48字节capacity的ByteBuffer的例子。

ByteBuffer buf = ByteBuffer.allocate(48);

向Buffer写数据

写数据到Buffer有两种方式:

int bytesRead = inChannel.read(buf); //read into buffer.
buf.put(127);

flip(重要)

flip方法将Buffer从写模式切换到读模式。调用flip()方法会将position设回0,并将limit设置成之前position的值

从Buffer中读取数据

从Buffer中读取数据有两种方式:

1.从Buffer读取数据到Channel。

int bytesWritten = inChannel.write(buf);     

2.使用get()方法从Buffer中读取数据。

byte aByte = buf.get();      

rewind()方法(重要)

Buffer.rewind()将position设回0,所以你可以重读Buffer中的所有数据。limit保持不变,仍然表示能从Buffer中读取多少个元素(byte、char等)。

clear()与compact()方法

一旦读完Buffer中的数据,需要让Buffer准备好再次被写入。可以通过clear()或compact()方法来完成。

如果调用的是clear()方法,position将被设回0,limit被设置成 capacity的值。换句话说,Buffer 被清空了。Buffer中的数据并未清除,只是这些标记告诉我们可以从哪里开始往Buffer里写数据。

compact()方法将所有未读的数据拷贝到Buffer起始处。然后将position设到最后一个未读元素正后面。limit属性依然像clear()方法一样,设置成capacity。现在Buffer准备好写数据了,但是不会覆盖未读的数据。

mark()与reset()方法

通过调用Buffer.mark()方法,可以标记Buffer中的一个特定position。之后可以通过调用Buffer.reset()方法恢复到这个position。

buffer.mark();
//call buffer.get() a couple of times, e.g. during parsing.
buffer.reset(); //set position back to mark.

equals()与compareTo()方法

equals()

当满足下列条件时,表示两个Buffer相等:

  1. 有相同的类型(byte、char、int等)。
  2. Buffer中剩余的byte、char等的个数相等。
  3. Buffer中所有剩余的byte、char等都相同。

equals只是比较Buffer的一部分,不是每一个在它里面的元素都比较。实际上,它只比较Buffer中的剩余元素。

compareTo()方法

compareTo()方法比较两个Buffer的剩余元素(byte、char等), 如果满足下列条件,则认为一个Buffer“小于”另一个Buffer:

  1. 第一个不相等的元素小于另一个Buffer中对应的元素 。
  2. 所有元素都相等,但第一个Buffer比另一个先耗尽(第一个Buffer的元素个数比另一个少)。

Selectors

Selector(选择器)是Java NIO中能够检测一到多个NIO通道,并能够知晓通道是否为诸如读写事件做好准备的组件。因此一个单独的线程可以管理多个channel,从而管理多个网络连接。

Selector的创建

通过调用Selector.open()方法创建一个Selector

Selector selector = Selector.open();

向Selector注册通道

为了将Channel和Selector配合使用,必须将channel注册到selector上。通过SelectableChannel.register()方法来实现

channel.configureBlocking(false);
SelectionKey key = channel.register(selector,
Selectionkey.OP_READ);

与Selector一起使用时,Channel必须处于非阻塞模式下。这意味着不能将FileChannel与Selector一起使用(注意),因为FileChannel不能切换到非阻塞模式。而套接字通道都可以。

注意register()方法的第二个参数。这是一个“interest集合”,意思是在通过Selector监听Channel时对什么事件感兴趣。可以监听四种不同类型的事件:

  1. Connect
  2. Accept
  3. Read
  4. Write

这四种事件用SelectionKey的四个常量来表示:

  1. SelectionKey.OP_CONNECT
  2. SelectionKey.OP_ACCEPT
  3. SelectionKey.OP_READ
  4. SelectionKey.OP_WRITE

如果你对不止一种事件感兴趣,那么可以用“位或”操作符将常量连接起来,如下:

int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;

SelectionKey

在上一小节中,当向Selector注册Channel时,register()方法会返回一个SelectionKey对象。这个对象包含了一些你感兴趣的属性

检测channel中什么事件或操作已经就绪可以使用以下四个方法,它们都会返回一个布尔类型:

selectionKey.isAcceptable();
selectionKey.isConnectable();
selectionKey.isReadable();
selectionKey.isWritable();

Channel + Selector

从SelectionKey访问Channel和Selector很简单。如下:

Channel  channel  = selectionKey.channel();
Selector selector = selectionKey.selector();

附加的对象

可以将一个对象或者更多信息附着到SelectionKey上,这样就能方便的识别某个给定的通道。例如,可以附加 与通道一起使用的Buffer,或是包含聚集数据的某个对象。

selectionKey.attach(theObject);
Object attachedObj = selectionKey.attachment();

还可以在用register()方法向Selector注册Channel的时候附加对象。

SelectionKey key = 
            channel.register(selector, SelectionKey.OP_READ, theObject);

通过Selector选择通道

一旦向Selector注册了一或多个通道,就可以调用几个重载的select()方法。这些方法返回你所感兴趣的事件(如连接、接受、读或写)已经准备就绪的那些通道数。

select()阻塞到至少有一个通道在你注册的事件上就绪了。

select(long timeout)和select()一样,除了最长会阻塞timeout毫秒(参数)。

selectNow()不会阻塞,不管什么通道就绪都立刻返回(译者注:此方法执行非阻塞的选择操作。如果自从前一次选择操作后,没有通道变成可选择的,则此方法直接返回零。)。

select()方法返回的int值表示有多少通道已经就绪。

selectedKeys()

一旦调用了select()方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用selector的selectedKeys()方法,访问“已选择键集(selected key set)”中的就绪通道。

Set selectedKeys = selector.selectedKeys();

当像Selector注册Channel时,Channel.register()方法会返回一个SelectionKey 对象。这个对象代表了注册到该Selector的通道。可以通过SelectionKey的selectedKeySet()方法访问这些对象。

Set selectedKeys = selector.selectedKeys();
Iterator keyIterator = selectedKeys.iterator();
while(keyIterator.hasNext()) {
    SelectionKey key = keyIterator.next();
    if(key.isAcceptable()) {
        // a connection was accepted by a ServerSocketChannel.
    } else if (key.isConnectable()) {
        // a connection was established with a remote server.
    } else if (key.isReadable()) {
        // a channel is ready for reading
    } else if (key.isWritable()) {
        // a channel is ready for writing
    }
    keyIterator.remove();
}

注意每次迭代末尾的keyIterator.remove()调用。Selector不会自己从已选择键集中移除SelectionKey实例。必须在处理完通道时自己移除。下次该通道变成就绪时,Selector会再次将其放入已选择键集中。SelectionKey.channel()方法返回的通道需要转型成你要处理的类型

SocketChannel channel = (SocketChannel) selectionKey.channel();

wakeUp()

某个线程调用select()方法后阻塞了,即使没有通道已经就绪,也有办法让其从select()方法返回。只要让其它线程在第一个线程调用select()方法的那个对象上调用Selector.wakeup()方法即可。阻塞在select()方法上的线程会立马返回。

如果有其它线程调用了wakeup()方法,但当前没有线程阻塞在select()方法上,下个调用select()方法的线程会立即“醒来(wake up)。

close()

用完Selector后调用其close()方法会关闭该Selector,且使注册到该Selector上的所有SelectionKey实例无效。通道本身并不会关闭。